

An Experimental Kalman Filter Approach to the International Terrestrial Reference Frame Realization

- X. "Frank" Wu¹, Claudio Abbondanza¹, Zuheir Altamimi², T. Mike Chin¹, Richard Gross¹, and Mike Heflin¹
 - Jet Propulsion Laboratory, California Institute of Technology, USA
 - 2. Institut National de l'Information Geographique et Forestiere, France

Copyright 2012. All rights reserved.

Current ITRF Status and Rationale

Secular frame characterized by X, V and a full covariance matrix

- Linear motion models for all sites
- Origin at mean but not instantaneous CM
 - CM for secular motion
 - Close to CF for sub-secular motions
- The linear motion model works very well and the ITRF2008 frame is quite stable at 0.3 – 0.5 mm/yr

The case for an Experimental Kalman Filter Approach

- Non-linear motion, sites with short data span
- Near real-time orbit determination and global monitoring
- Unify different geodetic data time series in one and the same frame
- Origin at nearly instantaneous CM

Experimental Kalman Filter Approach to TRF

- One reference frame realized by time series
- Origin defined at weekly (nearly instantaneous) CM
 - Currently through SLR data
 - Could take other data or models in the future
- Scale realized by weekly SLR/VLBI data
- Orientation defined weekly by convention and no net rotation
- Local ties are applied only once in the weeks of surveying or within the continuous segments without offsets
- Co-motion constraints are applied to most if not all co-located sites

Weekly Combination Strategy

- Use CATREF heritage
- Combination done at weekly basis
- Kalman Filter Data Update
 - Coordinates in file k

$$X_{s}^{i} = X_{c}^{i} + (t_{s}^{i} - t_{0})\dot{X}_{c}^{i} + T_{k} + D_{k}X_{c}^{i} + R_{k}X_{c}^{i}$$
$$+ (t_{s}^{i} - t_{k})[\dot{T}_{k} + \dot{D}_{k}X_{c}^{i} + \dot{R}_{k}X_{c}^{i}]$$

- Local Ties applied once
- Tight Orientation Constraints every week

$$0 = B(X_c - X_r)$$

- Weekly displacements at most co-located sites are constrained to be the same

EOP in file k

$$x_{s}^{p} = x_{c}^{p} + R2_{k}$$

$$y_{s}^{p} = y_{c}^{p} + R1_{k}$$

$$UT_{s} = UT_{c} - \frac{1}{f}R3_{k}$$

$$\dot{x}_{s}^{p} = \dot{x}_{c}^{p}$$

$$\dot{y}_{s}^{p} = \dot{y}_{c}^{p}$$

$$LOD_{s} = LOD_{c}$$

Time Update or Prediction

Coordinate Decomposition

$$\mathbf{X}_{c} = \begin{pmatrix} X_{c}^{1} \\ Y_{c}^{1} \\ Z_{c}^{1} \\ \vdots \\ X_{c}^{i} \end{pmatrix} = \mathbf{X} + \mathbf{S}_{\mathbf{p}}$$

- Equation of Dynamics
- Time Update or State Transition

$$\begin{bmatrix} X_k \\ V_k \\ S_k^{next} \\ S_k^{now} \end{bmatrix} = \begin{bmatrix} 1 & dt & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2e^{-dt/\tau} \cos 2\pi \frac{dt}{T} & -e^{-2dt/\tau} \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_{k-1} \\ V_{k-1} \\ S_{k-1}^{next} \\ S_{k-1}^{now} \end{bmatrix} + \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_p \\ 0 \end{bmatrix}$$

EGU2012-11920 XL74 Abbondanza et al.

$$EOP_{k} = EOP_{k-1} + \varepsilon_{EOP}$$
$$T_{k} = T_{k-1} + \varepsilon_{T}$$

Flow Chart of Weekly Combination Filter-Smoother

Pre-processing

- SLR/VLBI/GPS/DORIS: neqloose, proj, stack_clean
- Tie, breaks, vcon., Datum
- Weekly input files: OPT, TSG, Datum

Input Control parameters

Bookkeeping

- Sites, ERP, TSG
- Segments, POSB, VELB, Tie epoch, Co-motion pairs

LSQ Weekly Combination

- Meter level a priori + 1 m ties
- Origin from weekly SLR CM
- Scale from weekly VLBI/SLR
- Cooperating realistic ties

Tight orientation/comotion constraints

Dynamics/A priori Stochastic σ_{ε}

Kalman (Forward) Filter
Data update/Time
update(Backward)

Weekly coordinates, residuals/statistics

Kalman Filter and RTS Smoother

Kalman Filter and RTS Smoother

Kalman Filter and RTS Smoother

Transformation Parameters between ITRF2005 and Weekly Combination (1996-2005

No Annual Components

Tx (mm)	Ty (mm)	Tz (mm)	D (ppb)	Rx (µas)	Ry (µas)	Rz (µas)
0.1	-0.1	-0.4	-0.69	-26	-1	11
Vx (mm/y)	Vy (mm/y)	Vz (mm/y)	(ppb/y)	\dot{R}_{x} (µas/y)	$\dot{R}_{_{y}}$ (µas/y)	\dot{R}_z (µas/y)
0.0	0.0	0.3	0.00	10	-5	3

With Annual Components

Tx (mm)	IVIMM	Tz (mm)	D (ppb)	Rx (µas)	Ry (µas)	Rz (µas)
0.1		-0.4	-0.65	-26	-2	11
Vx (mm/y)	Vy (mm/y)	Vz (mm/y)	(ppb/y)	\dot{R}_x (µas/y)	$\dot{R}_{_{\mathcal{Y}}}(\mu as/y)$	\dot{R}_z (µas/y)
0.0	0.0	0.2	-0.01	10	-5	3

Summary

- Consistently and accurately defined and realized TRF is essential for global change monitoring
- Experimental TRF realized by nearly instantaneous geocentric time series and combinations are done weekly
- The Kalman filter and RTS smoother offer great power and flexibility to estimate time-dependent parameters. Easy on constraints over variables such as displacements
- Fragmented time series at co-located sites are unified dynamically
- Time series from different geodetic techniques are unified in the same frame